Cobb.E2.80.93Douglas utilities Cobb–Douglas production function
the cobb–douglas function used utility function. in context consumer assumed have finite wealth, , utility maximization takes form:
max
x
u
(
x
)
=
max
x
i
∏
i
=
1
l
x
i
α
i
subject constraint
∑
i
=
1
l
p
i
x
i
=
w
{\displaystyle \max _{x}u(x)=\max _{x_{i}}\prod _{i=1}^{l}x_{i}^{\alpha _{i}}\quad {\text{ subject constraint }}\quad \sum _{i=1}^{l}p_{i}x_{i}=w}
where
w
{\displaystyle w}
total wealth of consumer ,
p
i
{\displaystyle p_{i}}
prices of goods. utility may maximized follows. first, take logarithm of utility
ln
u
(
x
)
=
∑
i
=
1
l
λ
i
ln
x
i
{\displaystyle \ln u(x)=\sum _{i=1}^{l}{\lambda _{i}}\ln x_{i}}
let λ = λ1 + ... + λl. since function
x
↦
x
1
λ
{\displaystyle x\mapsto x^{\frac {1}{\lambda }}}
strictly monotone x > 0, follows
u
(
x
)
=
u
~
(
x
)
1
λ
{\displaystyle u(x)={\tilde {u}}(x)^{\frac {1}{\lambda }}}
represents same preferences. setting
α
i
=
λ
i
λ
{\displaystyle \alpha _{i}={\frac {\lambda _{i}}{\lambda }}}
can shown that
∑
i
=
1
l
α
i
=
1
{\displaystyle \sum _{i=1}^{l}\alpha _{i}=1}
the optimal solution then:
∀
j
:
x
j
⋆
=
w
α
j
p
j
.
{\displaystyle \forall j:\qquad x_{j}^{\star }={\frac {w\alpha _{j}}{p_{j}}}.}
an interpretation of solution consumer uses fraction
α
j
{\displaystyle \alpha _{j}}
of wealth in purchasing j.
the indirect utility function can calculated substituting demand utility function. ignoring multiplicative constant depends on
α
i
{\displaystyle \alpha _{i}}
s, get:
v
(
p
,
w
)
=
w
∏
i
=
1
l
p
i
α
i
{\displaystyle v(p,w)={\frac {w}{\prod _{i=1}^{l}p_{i}^{\alpha _{i}}}}}
which special case of gorman polar form. expenditure function inverse of indirect utility function:
e
(
p
,
u
)
=
∏
i
=
1
l
p
i
α
i
u
{\displaystyle e(p,u)=\prod _{i=1}^{l}p_{i}^{\alpha _{i}}u}
^ brenes, adrián (2011). cobb-douglas utility function.
^ cite error: named reference palgrave invoked never defined (see page).
^ varian, hal (1992). microeconomic analysis (third ed.). new york: norton. isbn 0-393-95735-7.
Comments
Post a Comment