Problem Statement 2D adaptive filters
general block diagram 2d adaptive filter.
in digital signal processing, linear shift invariant system can represented convolution of signal filter s impulse response, given expression:
y
(
n
1
,
n
2
)
=
∑
m
1
∑
m
2
w
(
m
1
,
m
2
)
x
(
n
1
−
m
1
,
n
2
−
m
2
)
{\displaystyle y(n_{1},n_{2})=\sum _{m_{1}}\sum _{m_{2}}w(m_{1},m_{2})x(n_{1}-m_{1},n_{2}-m_{2})}
if system model desired response
d
(
n
1
,
n
2
)
{\displaystyle d(n_{1},n_{2})}
, adaptive system can obtained continuously adjusting weight values according cost function
f
[
e
(
n
1
,
n
2
)
]
{\displaystyle f[e(n_{1},n_{2})]}
evaluates error between 2 responses.
e
(
n
1
,
n
2
)
=
d
(
n
1
,
n
2
)
−
y
(
n
1
,
n
2
)
{\displaystyle e(n_{1},n_{2})=d(n_{1},n_{2})-y(n_{1},n_{2})}
w
j
+
1
(
n
1
,
n
2
)
=
w
j
(
n
1
,
n
2
)
+
f
[
e
(
n
1
,
n
2
)
]
{\displaystyle w_{j+1}(n_{1},n_{2})=w_{j}(n_{1},n_{2})+f[e(n_{1},n_{2})]}
Comments
Post a Comment